Gut bacteria test for ME CFS

Studies find microbiome changes may be signature for ME/CFS

Researchers have found differences in the gut microbiomes of people with myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) compared to healthy controls. Findings from two studies, published in Cell Host & Microbe and funded by the National Institutes of Health add to growing evidence that connects disruptions in the gut microbiome, the complete collection of bacteria, viruses, and fungi that live in our gastrointestinal system, to ME/CFS.


“The microbiome has emerged as a potential contributor to ME/CFS. These findings provide unique insights into the role the microbiome plays in the disease and suggest that certain differences in gut microbes could serve as biomarkers for ME/CFS,” said Vicky Whittemore, Ph.D., program director at NIH’s National Institute of Neurological Disorders and Stroke (NINDS).

In one study, senior author Brent L. Williams, Ph.D., assistant professor, W. Ian Lipkin, M.D., John Snow Professor of Epidemiology and director of the Center for Infection and Immunity at the Columbia University Mailman School of Public Health, in New York City, and their collaborators analyzed the genetic makeup of gut bacteria in fecal samples collected from a geographically diverse cohort of 106 people with ME/CFS and 91 healthy controls. The results revealed key differences in microbiome diversity, quantity, metabolic pathways, and interactions between species of gut bacteria.

In another study at the Jackson Laboratory in Farmington, Connecticut, Julia Oh PhD, associate professor, and Derya Unutmaz, M.D., professor, teamed up with other ME/CFS experts to study microbiome abnormalities in different phases of ME/CFS. Dr. Oh’s team collected and analyzed clinical data, fecal samples, and blood samples from 149 people with ME/CFS who had been diagnosed within the previous four years (74 short-term) or who had been diagnosed more than 10 years ago (75 long-term) and 79 healthy controls.

The results showed that the short-term group had less microbial diversity, while the long-term group established a stable, but individualized gut microbiome similar to healthy controls. Dr. Oh and her colleagues found lower levels of several butyrate-producing species, including F. prausnitzii, especially in the short-term participants. There was also a reduction in species associated with tryptophan metabolism in all ME/CFS participants compared to controls.

More on this research


The Science Media Centre has comments on these studies including Prof Chris Ponting

“The two microbiome studies are large in scale and ambition, seeking to link changes in gut bacteria to the terrible symptoms experienced by millions of people with ME/CFS worldwide. As the authors themselves note, they’re unable to tell whether any bacterial changes cause, or else are downstream consequences of, ME/CFS. This crucial question deserves future experiments that perturb these bacteria in predictable and long-lasting ways.”

Prof Chris Ponting, Principal Investigator at the MRC Human Genetics Unit, Institute of Genetics and Cancer and Investigator on the DecodeME project, University of Edinburgh

Research Links

JAX study publication

Lipkin et al publication

Further news coverage


New Scientist (paywall)

Technology Networks

Inside Precision Medicine

News Medical


Daily Beast

Shopping Basket