Index of ME/CFS Published Research
An A-Z index of the most important published research

1st November 2022 The ME Association
Foreword

Welcome to the ME Association Index of Published ME/CFS Research.

This is an A-Z index of the most important published research studies and selected key documents and articles, listed by subject matter, on myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS). It is correct to 1st August 2021.

The Index is updated at the end of each month and we publish a weekly update of recent research publications that are also available on the MEA website and social media.

The Index adopts the subject headings used in the MEA Clinical and Research Guide which provides a review of current clinical knowledge and research evidence and is updated annually.

This authoritative and very popular book is written by Dr Charles Shepherd, Hon. Medical Adviser to the ME Association.

The latest edition is available to order from the MEA website shop. We are pleased to be able to offer free hard copies to health professionals upon application and it is also available on Kindle.

Please support our vital work

If you would like to support our efforts and ensure we are able to inform, support, campaign, and invest in biomedical research, then please donate today.

- Just click the image opposite for one-off donations or to establish a regular payment.
- You can even establish your own fundraising event on JustGiving.
- Or why not join the ME Association as a member and be part of our growing community?
- In return for an annual subscription from only £18, you will receive ME Essential – quite simply the best M.E. magazine in the UK today!
Contents

Foreword

1. Nomenclature and definition
 1.1 Prevalence

2. Epidemiology

3. Co-morbidity

4. Biomedical Research
 4.1 Biobank UK ME/CFS
 4.2 Biomarker Identification
 4.2.1 Biomarker Landscape Project
 4.3 Cardiac Function
 4.4 Endothelial cells
 4.5 Exercise physiology/testing
 4.6 Extracellular vesicles
 4.7 Gastrointestinal and microbiome
 4.8 Gene expression
 4.8.1 Epigenetics
 4.9 General reviews
 4.10 Genetic predisposition
 4.11 Immunology
 4.12 Infection
 4.13 Ion channels
 4.14 Microclots
 4.15 Metabolomics
 4.16 Miscellaneous
 4.17 Mitochondria and energy production
 4.18 Muscle
 4.19 Neurology: Autonomic nervous system (ANS) dysfunction
 4.20 Neurology: Central nervous system and neuroimaging
 4.21 Neurology: Hypothalamic and neuroendocrine function
 4.22 Neurology: Neuropsychology and cognitive function
 4.23 Neurology: Neurotransmitter function
4.24 Pain .. 101
4.25 Phenotypes and sub-groups .. 102
4.26 Post-Exertional Malaise (PEM) .. 104
4.27 Post-mortem research ... 107
4.28 Relapse and recovery cycles .. 107
4.29 Sleep disturbance ... 108
4.30 Vision ... 110

5. Psychiatry and psychology .. 111

6. Sociology ... 116

7. Future research recommendations ... 117

7.1 Platforms to facilitate research .. 120

8. Clinical assessment, symptoms, and diagnosis ... 121

8.1 General .. 121
8.2 Investigations .. 129
8.3 Physical examination ... 132
8.4 Symptoms .. 134

9. Management .. 134

9.1 Cognitive Behavioural Therapy (CBT) ... 134
9.2 Complementary and alternative therapies ... 141
9.3 Diet and nutrition ... 147
9.4 Exercise, Pacing and activity management ... 150
9.5 General management ... 157
9.6 PACE Trial .. 162
9.7 Pharmacological treatment ... 165
9.8 Immunoadsorption/ Apheresis .. 178
9.9 Pregnancy .. 179

10. Prognosis and quality of life ... 180

10.1 Age ... 180
10.2 Carers ... 180
10.3 Mortality .. 180
10.4 Prognosis and recovery .. 181
10.5 Quality of life .. 183
10.6 Severe ME ... 186
10.7 Wearables and activity monitoring... 187
11. Vaccinations .. 187
12. Children and adolescents .. 190
13. Government Documents ... 203
 13.1 Disability support ... 203
 13.2 Economic cost to the UK .. 203
 13.3 General reports, debates, and statements ... 205
14. Healthcare ... 207
 14.1. NICE Guidelines ... 210
15. Case studies and case reports ... 210
16. Long-COVID which cover ME/CFS .. 211
 16.1 Evidence of overlap with ME/CFS .. 211
 16.2 Endothelial cells ... 213
 16.3 Microclots .. 213
 16.4. Miscellaneous ... 213
 16.5 Predictors ... 213
 16.6 Prognosis and quality of life .. 214
 16.7 Symptoms .. 214
 16.8 Unclassified list! (Unsorted) ... 214
17. Miscellaneous .. 220
18. Master and Doctoral Theses ... 222

The ME Association: Please support our vital work .. 223
ME CONNECT

We’re here to help 0344 576 5326

Do you need to talk?

ME Connect is the telephone helpline service of the ME Association. It provides information and support for people with ME and those who live with or care for them.

ME Connect provides a safe and understanding environment for people with ME so that they know they are being heard and understood.

ME Connect is a member of the Helplines Partnership which promotes high standards.

CALL 0344 576 5326
10am-12noon, 2pm-4pm, 7pm-9pm
every day of the year

Calls cost the same as other standard landline numbers (starting 01 or 02). If you have a call package for your landline or mobile phone then calls will normally come out of your inclusive minutes.
Please note: Research published after May 2022 (the date of the last update to the MEA Clinical and Research Guide or ‘Purple Book’) is denoted by *NEW in purple following the citation in the listing below.

1. Nomenclature and definition

Brurberg et al. (2013) Case definitions for chronic fatigue syndrome/myalgic encephalomyelitis (CFS/ME): a systematic review. BMJ Open 4 (2). Link: https://bmjopen.bmj.com/content/4/2/e003973

1.1 Prevalence

2. Epidemiology

3. Co-morbidity

Maes M et al. (2022) In Schizophrenia, Chronic Fatigue Syndrome- and Fibromyalgia-Like Symptoms are Driven by Breakdown of the Paracellular Pathway with Increased Zonulin and Immune Activation-Associated Neurotoxicity. *CNS & Neurological Disorders - Drug Targets* 21. Link: doi.org/10.2174/1871527321666220806100600 (*NEW*)

4. Biomedical Research

4.1 Biobank UK ME/CFS

Lacerda EM et al. (2017) The UK ME/CFS Biobank for biomedical research on Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Multiple Sclerosis. Open Journal of Bioresources 4: 4. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5482226/

4.2 Biomarker Identification

Hanevik K et al. (2022) No difference in serum levels of B-cell activating receptor and antibodies against cytolethal distending toxin B and flagellin in post-infectious irritable bowel syndrome and chronic fatigue syndrome after *Giardia* infection. *JGH Open* (2022):1-4. Link: doi.org/10.1002/jgh3.12724

Nunes M et al. (2022) The occurrence of hyperactivated platelets and fibrinoid microclots in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). ResearchSquare [Preprint]. Link: doi.org/10.21203/rs.3.rs-1598634/v1 (**NEW**)

Patterson BK et al. (2022) Cytokine Hub Classification of PASC, ME-CFS and other PASC-like Conditions. ResearchSquare [Preprint]. Link: doi.org/10.21203/rs.3.rs-1727226/v1 (**NEW**)

Sepúlveda N et al. (2022) Revisiting IgG antibody reactivity to Epstein-Barr virus in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome and its potential application to disease diagnosis. medRxiv [Preprint]. Link: https://www.medrxiv.org/content/10.1101/2022.04.20.22273990v1

4.2.1 Biomarker Landscape Project

4.3 Cardiac Function

Campen CM and Visser FC (2018) The Abnormal Cardiac Index and Stroke Volume Index Changes During a Normal Tilt Table Test in ME/CFS Patients Compared to Healthy Volunteers, are Not Related to Deconditioning, *Journal of Thrombosis and Circulation* 107. Link: https://tinyurl.com/y5nb9dyr

4.4 Endothelial cells

Blauensteiner J et al. (2021) Altered endothelial dysfunction-related miRs in plasma from ME/CFS patients. *Scientific Reports* 11: 10604. Link: https://www.nature.com/articles/s41598-021-89834-9#citeas

Cambras T et al. (2022) Circadian skin temperature rhythm and dysautonomia in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the role of endothelin-1 in the vascular dysregulation. ResearchSquare [preprint]. Link: doi.org/10.21203/rs.3.rs-2044838/v1 (*NEW) Comment

4.5 Exercise physiology/testing

Baraniuk JN et al. (2021) Differential Effects of Exercise on fMRI of the Midbrain Ascending Arousal Network Nuclei in Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) in a Model of Postexertional Malaise (PEM). Preprints: 2021110420. Link: https://www.preprints.org/manuscript/202111.0420/v1

4.6 Extracellular vesicles

4.7 Gastrointestinal and microbiome

Hanevik K et al. (2022) No difference in serum levels of B-cell activating receptor and antibodies against cytolethal distending toxin B and flagellin in post-infectious irritable bowel syndrome and chronic fatigue syndrome after Giardia infection. JGH Open (2022):1-4. Link: doi.org/10.1002/jgh3.12724

Kenyon J et al. (2019) A Retrospective Outcome Study of 42 Patients with Chronic Fatigue Syndrome, 30 of Whom had Irritable Bowel Syndrome. Half were treated with oral approaches, and half were treated with Faecal Microbiome Transplantation. Human Microbiome Journal 13. Link: https://tinyurl.com/y2cqxzgf

4.8 Gene expression

Asad HN et al. (2022) A Causal-Pathway Phenotype of Chronic Fatigue Syndrome due to Hemodialysis in Patients with End-Stage Renal Disease. CNS & Neurological Disorders Drug Targets. [Epub ahead of print.] Link: doi.org/10.2174/1871527321666220401140747

Blauensteiner J et al. (2021) Altered endothelial dysfunction-related miRs in plasma from ME/CFS patients. Scientific Reports 11: 10604. Link: https://www.nature.com/articles/s41598-021-89834-9#citeas

Comment

Wang Z et al. (2022) Autoimmune Gene Expression Profiling of Fingerstick Whole Blood in Chronic Fatigue Syndrome. *ResearchSquare* [Preprint]. Link: doi.org/10.21203/rs.3.rs-1942047/v1

4.8.1 Epigenetics

Almenar-Perez et al. (2019) miRNA profiling of circulating EVs in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). *Journal of Extracellular Vesicles*, 7: 139. Link: https://tinyurl.com/y4b8durc

4.9 General reviews

Kuvyani B et al. (2022) Could the kynurenine pathway be the key missing piece of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) complex puzzle? Cellular and Molecular Life Science 79 (8): 412. Link: doi.org/10.1007/s00018-022-04380-5 (**NEW)

Walker MOM et al. (2022) The significance of oxidative stress in the pathophysiology of Long COVID and Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS). *Medical Research Archives* 10 [9], Link: doi.org/10.18103/mra.v10i9.3050 (*NEW*)

4.10 Genetic predisposition

Kendler K et al. (2022). A distinctive profile of family genetic risk scores in a Swedish national sample of cases of fibromyalgia, irritable bowel syndrome, and chronic fatigue syndrome compared to rheumatoid arthritis and major depression. Psychological Medicine: 1-8. Link: doi.org/10.1017/S0033291722000526

4.11 Immunology

Dibnah B et al. (2019) Investigating the role of TGF-B and fatigue in Chronic Fatigue Syndrome. *Annals of the Rheumatic Diseases* 78 (2). Link: https://ard.bmj.com/content/78/Suppl_2/1495.2.abstract

Hornig M et al. (2015) Distinct plasma immune signatures in ME/CFS are present early in the course of illness. *Science Advances* 1(1): e1400121. Link: http://advances.sciencemag.org/content/1/1/e1400121

Jonsjo MA et al. (2019) Patients with ME/CFS (Myalgic Encephalomyelitis/Chronic Fatigue Syndrome) and chronic pain report similar level of sickness behavior as individuals injected with bacterial endotoxin at peak inflammation. Brain, Behavior & Immunity - Health 2:100028. Link: doi.org/10.1016/j.bbih.2019.100028

Marks DF (2021) Myalgic encephalomyelitis/ chronic fatigue syndrome as a breakdown of homeostasis. Qeios. Link: https://www.qeios.com/read/FZ1Y68.2

Patterson BK et al. (2022) Cytokine Hub Classification of PASC, ME-CFS and other PASC-like Conditions. ResearchSquare [Preprint]. Link: doi.org/10.21203/rs.3.rs-1598634/v1 (**NEW**)

Ueland M et al. (2022) No replication of previously reported association with genetic variants in the T cell receptor alpha (TRA) locus for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). *Translational Psychiatry* 12: 277. Link: [doi.org/10.1038/s41398-022-02046-1 (NEW)](https://doi.org/10.1038/s41398-022-02046-1)

Comment

4.12 Infection

Asprusten T et al. (2019) EBV-requisitioning physicians’ guess on fatigue state 6 months after acute EBV infection. BMJ Paediatrics Open 3 (1). Link: https://tinyurl.com/y39pwy8r

Cox BS et al. (2022) EBV/HHV-6A dUTPases contribute to Myalgic Encephalomyelitis/Chronic-Fatigue-Syndrome pathophysiology by enhancing TFH cell differentiation and extrafollicular activities. JCI Insight: e158193. [Epub ahead of print.] Link: doi.org/10.1172/jci.insight.158193

Fevang B et al. (2022) Lasting Immunological Imprint of Primary Epstein-Barr Virus Infection With Associations to Chronic Low-Grade Inflammation and Fatigue. Frontiers in Immunology 12: 715102. Link: doi.org/10.3389/fimmu.2021.715102

Hanevik K et al. (2022) No difference in serum levels of B-cell activating receptor and antibodies against cytolethal distending toxin B and flagellin in post-infectious irritable bowel syndrome and chronic fatigue syndrome after Giardia infection. JGH Open (2022):1-4. Link: doi.org/10.1002/jgh3.12724

4.13 Ion channels

Nguyen T et al. (2016) Impaired calcium mobilization in natural killer cells from chronic fatigue syndrome/myalgic encephalomyelitis patients is associated with transient receptor potential melastatin 3 ion channels. *Clinical and Experimental Immunology* 187 (2): 284-293. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5217865/

4.14 Microclots

Kell DB and Pretorius E (2022) The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. *The Biochemical Journal* 479 (16): 1653-1708. Link: doi.org/10.1042/BCJ20220154 (*NEW*)

4.15 Metabolomics

Germain A et al. (2022) Plasma metabolomics reveals disrupted response and recovery following maximal exercise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome. JCI Insight 7(9): e157621. Link: doi.org/10.1172/jci.insight.157621

Yamano E et al. (2016) Index markers of chronic fatigue syndrome with dysfunction of TCA and urea cycles. Science Reports doi: 10.1038/srep34990. Link: https://www.nature.com/articles/srep34990

4.16 Miscellaneous

Maes M et al. (2022) In Schizophrenia, Chronic Fatigue Syndrome- and Fibromyalgia-Like Symptoms are Driven by Breakdown of the Paracellular Pathway with Increased Zonulin and Immune Activation-Associated Neurotoxicity. CNS & Neurological Disorders - Drug Targets 21. Link: doi.org/10.2174/1871527321666220806100600 (*NEW)

4.17 Mitochondria and energy production

Kuvyani B et al. (2022) Could the kynurenine pathway be the key missing piece of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) complex puzzle? *Cellular and Molecular Life Science* 79 (8): 412. Link: doi.org/10.1007/s00018-022-04380-5 (*NEW*)

Schoeman EM et al. (2017) Clinically proven mtDNA mutations are not common in those with chronic fatigue syndrome. *MBC Medical Genetics* 18: 29. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5356238/

4.18 Muscle

4.19 Neurology: Autonomic nervous system (ANS) dysfunction

Cambras T et al. (2022) Circadian skin temperature rhythm and dysautonomia in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: the role of endothelin-1 in the vascular dysregulation. ResearchSquare [preprint]. Link: doi.org/10.21203/rs.3.rs-2044838/v1 (*NEW) Comment

Eccles J et al. (2022) Mechanistic factors contributing to pain and fatigue in fibromyalgia and me/cfs: autonomic and inflammatory insights from an experimental medicine study. *Annals of the rheumatic diseases* 81: 1719. Link: https://ard.bmj.com/content/81/Suppl_1/1719.2 (*NEW)

Lee J et al. (2020) Clinically accessible tools for documenting the impact of orthostatic intolerance on symptoms and function in ME/CFS. Work [Epub ahead of print]. Link: https://content.iospress.com/articles/work/wor203169

Li H et al. (2014) Autoimmune Basis for Postural Tachycardia Syndrome. Journal of the American Heart Association 3: e000755. Link: http://jaha.ahajournals.org/content/3/1/e000755

Morrow AK et al. (2022) Long-Term COVID 19 Sequelae in Adolescents: the Overlap with Orthostatic Intolerance and ME/CFS. Current Paediatric Reports. Link: doi.org/10.1007/s40124-022-00261-4

Wheeler C et al. (2022) Cardiovascular Autonomic Regulation, ETCO2 and the Heart Rate Response to the Tilt Table Test in Patients with Orthostatic Intolerance. Applied Psychophysiology and Biofeedback. Link: doi.org/10.1007/s10484-022-09536-4

4.20 Neurology: Central nervous system and neuroimaging

Baraniuk JN et al. (2021) Differential Effects of Exercise on fMRI of the Midbrain Ascending Arousal Network Nuclei in Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) in a Model of Postexertional Malaise (PEM). Preprints: 2021110420. Link: https://www.preprints.org/manuscript/202111.0420/v1

Martinez ARM et al. (2012) Sensory Neuronopathy and Autoimmune Diseases. Autoimmune Diseases. Link: https://www.hindawi.com/journals/ad/2012/873587/

Thapalia K et al. (2022) Volumetric differences in hippocampal subfields and associations with clinical measures in myalgic encephalomyelitis/chronic fatigue syndrome. *Journal of Neuroscience Research* 100 (7): 1476-1486. Link: doi.org/10.1002/jnr.25048

4.21 Neurology: Hypothalamic and neuroendocrine function

4.22 Neurology: Neuropsychology and cognitive function

4.23 Neurology: Neurotransmitter function

4.24 Pain

Barhost EE et al. (2021) Pain-related post-exertional malaise in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) and Fibromyalgia: A systematic review and three-level meta-analysis. *Pain Medicine*: pnab308. [Epub ahead of print.] Link: doi.org/10.1093/pm/pnab308

Eccles J et al. (2022) Mechanistic factors contributing to pain and fatigue in fibromyalgia and me/cfs: autonomic and inflammatory insights from an experimental medicine study. *Annals of the rheumatic diseases* 81: 1719. Link: https://ard.bmj.com/content/81/Suppl_1/1719.2 (*NEW*)

4.25 Phenotypes and sub-groups

4.26 Post-Exertional Malaise (PEM)

Baraniuk JN et al. (2021) Differential Effects of Exercise on fMRI of the Midbrain Ascending Arousal Network Nuclei in Myalgic Encephalomyelitis / Chronic Fatigue Syndrome (ME/CFS) and Gulf War Illness (GWI) in a Model of Postexertional Malaise (PEM). Preprints: 2021110420. Link: https://www.preprints.org/manuscript/202111.0420/v1

Davenport TE et al. (2022) Lessons from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome for Long COVID: Postexertional Symptom Exacerbation is an Abnormal Response to Exercise/Activity. JOSPT. Link: doi.org/10.2519/jospt.blog.20220202

Holtzman C et al. (2019) Assessment of Post-Exertional Malaise (PEM) in Patients with Myalgic Encephalomyelitis (ME) and Chronic Fatigue Syndrome (CFS): A Patient-Driven Survey. Diagnostics 9 (1). Link: https://www.mdpi.com/2075-4418/9/1/26

4.27 Post-mortem research

4.28 Relapse and recovery cycles

4.29 Sleep disturbance

Gotts ZM et al. (2013) Are there sleep-specific phenotypes in patients with chronic fatigue syndrome? A cross-sectional polysomnography analysis. BMJ Open 3(6): e002999. Link: http://bmjopen.bmj.com/content/3/6/e002999

4.30 Vision

5. Psychiatry and psychology

Loades M (2022) Improving the identification and treatment of co-morbid depression and/or anxiety in adolescents with Chronic Fatigue Syndrome (CFS/ME). [Doctoral dissertation, University of Bristol] Link: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.852541

6. Sociology

Murray R et al. (2019) Duvet woman versus action man: the gendered aetiology of Chronic Fatigue Syndrome according to English newspapers. Feminist Media Studies. Link: https://tinyurl.com/yyfayo7v

7. Future research recommendations

Ramiller A et al. (2021) You + ME Registry: A Research Platform to Facilitate Clinical and Therapeutic Discoveries in ME/CFS and Related Diseases. Preprints: 2021110478. Link: https://www.preprints.org/manuscript/202111.0478/v1

Tokunaga K et al. (2020) Inclusion of family members without ME/CFS in research studies promotes discovery of biomarkers specific for ME/CFS. Work 66 (2): 327-337. Link: doi.org/10.3233/WOR-203177

7.1 Platforms to facilitate research

Ramiller A et al. (2021) You + ME Registry: A Research Platform to Facilitate Clinical and Therapeutic Discoveries in ME/CFS and Related Diseases. Preprints: 2021110478. Link: https://www.preprints.org/manuscript/202111.0478/v1

Rekeland IG et al. (2022) Activity monitoring and patient-reported outcome measures in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients. *PLOS ONE* 17(9): e0274472. Link: [doi.org/10.1371/journal.pone.0274472 (*NEW*)](https://doi.org/10.1371/journal.pone.0274472)

Comment

8. Clinical assessment, symptoms, and diagnosis

8.1 General

Newton JL et al. (2008) Fatigue in non-alcoholic fatty liver disease (NAFLD) is significant and associates with inactivity and excessive daytime sleepiness but not with liver disease severity or insulin resistance. Gut 57(6): 807-813. Link: https://www.ncbi.nlm.nih.gov/pubmed/18270241

Tokumasu K et al. (2022) Clinical Characteristics of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Diagnosed in Patients with Long COVID. *Medicina* 58: 850. Link: [doi.org/10.3390/medicina58070850 (*NEW*)](https://doi.org/10.3390/medicina58070850)

8.2 Investigations

8.3 Physical examination

8.4 Symptoms

Pain – see Biomedical Research, 4.21 above.
Post-Exertional Malaise – see Biomedical Research, 4.23 above.
Sleep disturbance – see Biomedical Research, 4.26 above.
Vision – see Biomedical Research, 4.28 above.

9. Management

9.1 Cognitive Behavioural Therapy (CBT)

Albers E et al. (2021) Effectiveness of Internet-Based Cognitive Behavior Therapy (Fatigue in Teenagers on the Internet) for Adolescents With Chronic Fatigue Syndrome in Routine Clinical Care: Observational Study. Journal of Medical Internet Research 23 (8): e24839. Link: https://pubmed.ncbi.nlm.nih.gov/34397389/

Clapperton B (2022) Applying latent class cluster analysis and data mining methods to identify classes of chronic fatigue syndrome patients that are predictive of treatment success. [Doctoral dissertation, King’s College London]. Link: https://kclpure.kcl.ac.uk/portal/files/181949538/2022_Clapperton_Ben_0976409_ethesis.pdf (*NEW*)

9.2 Complementary and alternative therapies

Fangfang X et al. (2021) Can prolong life with nine turn method (Yan Nian Jiu Zhuan) Qigong alleviates Fatigue, Sleep quality, Depression and anxiety on Patients with Chronic Fatigue Syndrome: a Randomized, Controlled, Clinical Study? (ResearchSquare) [Epub ahead of print.] Link: https://www.researchsquare.com/article/rs-965010/v1

9.3 Diet and nutrition

9.4 Exercise, Pacing and activity management

The ME Association, 7 Apollo Office Court, Radcliffe Road, Gawcott, Bucks, MK18 4DF. ME Connect Helpline: 0344 576 5326 Available every day of the year, during the hours of 10am-12noon, 2pm-4pm and 7pm-9pm. The ME Association is a registered charity number 801279.

Clague-Baker N et al. (2021) Survey of people with Myalgic Encephalomyelitis (ME) to explore their use and experiences of physiotherapy services in the UK. *Physiotherapy* P076 113 (1): E101-E102. Link: https://www.physiotherapyjournal.com/article/S0031-9406(21)00164-4/fulltext#relatedArticles

Thompson DP et al. (2017) Symptoms of chronic fatigue syndrome/myalgic encephalopathy are not determined by activity pacing when measured by the chronic pain coping inventory. Physiotherapy. Link: https://www.ncbi.nlm.nih.gov/pubmed/28843450

Zhu Y et al. (2022) Electroacupuncture at BL15 attenuates chronic fatigue syndrome by downregulating iNOS/NO signaling in C57BL/6 mice. *Anatomical Record (Hoboken)* [Epub ahead of print]. Link: doi.org/10.1002/ar.24953 (**NEW**)

9.5 General management

BACME. (2015) British Association for CFS/ME: Therapy and Symptom Management in CFS/ME. Link: https://www.bacme.info/

Froehlich L et al. (2021) Medical Care Situation of People with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome in Germany. Medicina 57, 646. Link: https://www.mdpi.com/1648-9144/57/7/646

9.6 PACE Trial

The ME Association Index of Published ME/CFS Research

Vink M. PACE trial authors continue to ignore their own null effect. Journal of Health Psychology 22 (9): 1134-1140. Link: https://www.ncbi.nlm.nih.gov/pubmed/28805519

9.7 Pharmacological treatment

Bolton MJ et al. (2020) Low-dose naltrexone as a treatment for chronic fatigue syndrome. *BMJ Case Reports* 13 (1). Link: https://casereports.bmj.com/content/13/1/e232502

Postgraduate Medical Journal 80(942): 230-232. Link:
http://pmj.bmj.com/content/80/942/230.info

Natelson BH et al. (1996) Randomized, double blind, controlled placebo-phase
in trial of low dose phenelzine in the chronic fatigue syndrome.
Psychopharmacology 124(3): 226-230. Link:

Natelson BH et al. (1998) Single-Blind, Placebo Phase-in Trial of Two Escalating
Doses of Selegiline in the Chronic Fatigue Syndrome. Neuropsychobiology 37(3): 150-154. Link:

Neary JP et al. (2008) Prefrontal cortex oxygenation during incremental exercise

Nijs J et al. (2012) Pain in patients with chronic fatigue syndrome: time for
specific pain treatment? Pain Physician 15(5): E677-E686. Link:

Nilsson MKL et al. (2017) A randomised controlled trial of the monoaminergic
stabiliser (-)-OSU6162 in treatment of myalgic encephalomyelitis/chronic fatigue
syndrome. Acta Neuropsychiatry 7: 1-10. Link:

Numata T. (2021) Could Minocycline be a "Magic Bullet" for the Treatment of
Myalgic Encephalomyelitis/Chronic Fatigue Syndrome? Internal Medicine 60

with fibromyalgia: a systematic review. Rheumatology International 28 (12):

Peterson PK et al. (1990) A controlled trial of intravenous immunoglobulin G in
Link: https://www.ncbi.nlm.nih.gov/pubmed/2239975

Peterson PK et al. (1998) A preliminary placebo-controlled crossover trial of
fludrocortisone for chronic fatigue syndrome. Archives of Internal Medicine

Plioplys AV and Plioplys S. (1997) Amantadine and L-Carnitine Treatment of
Chronic Fatigue Syndrome. Neuropsychobiology 35(1): 16-23. Link:

Saqulain S et al. (2022) Olmesartan alleviates symptoms of chronic fatigue syndrome in mice. ResearchSquare [preprint]. Link: doi.org/10.21203/rs.3.rs-1823147/v1 (*NEW*)

Van Campen LMC and Visser FC (2019) The Effect of Curcumin in Patients with Chronic Fatigue Syndrome/Myalgic Encephalomyelitis Disparate Responses in Different Disease Severities. Pharmacovigilance and Pharmacoepidemiology 2(1). Link: https://tinyurl.com/qpvhgdm

9.8 Immunoadsorption/ Apheresis

9.9 Pregnancy

10. Prognosis and quality of life

10.1 Age

10.2 Carers

Baken DM et al. (2022) Experiences of carers of youth, adult children and spouses with ME/CFS. *Chronic Illness* 0. Link: doi.org/10.1177/17423953221121696 (*NEW*)

10.3 Mortality

10.4 Prognosis and recovery

Hiremath S et al. (2022) Key Features of a Multi-Disciplinary Hospital-Based Rehabilitation Program for Children and Adolescents with Moderate to Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome ME/CFS. International Journal of Environmental Research and Public Health 19 (20): 13608. Link: doi.org/10.3390/ijerph192013608 (*NEW)

Sharpe M et al. (1992) Follow up of patients presenting with fatigue to an infectious diseases clinic. BMJ 305(6846): 147-152. Link: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1883193/

10.5 Quality of life

The ME Association, 7 Apollo Office Court, Radcliffe Road, Gawcott, Bucks. MK18 4DF. ME Connect Helpline: 0344 576 5326 Available every day of the year, during the hours of 10am-12noon, 2pm-4pm and 7pm-9pm. The ME Association is a registered charity number 801279.

10.6 Severe ME

 Hiremath S et al. (2022) Key Features of a Multi-Disciplinary Hospital-Based Rehabilitation Program for Children and Adolescents with Moderate to Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome ME/CFS. International Journal of Environmental Research and Public Health 19 (20): 13608. Link: doi.org/10.3390/ijerph192013608 (*NEW)

10.7 Technology - Wearables and activity monitoring

Rekeland IG et al. (2022) Activity monitoring and patient-reported outcome measures in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients. PLOS ONE 17(9): e0274472. Link: doi.org/10.1371/journal.pone.0274472 (*NEW)

Comment

11. Vaccinations

Hviid A et al. (2020) Association between quadrivalent human papillomavirus vaccination and selected syndromes with autonomic dysfunction in Danish females: population based, self-controlled, case series analysis. BMJ 370: m2930. Link: https://www.bmj.com/node/1033205.full

12. Children and adolescents

Albers E et al. (2021) Effectiveness of Internet-Based Cognitive Behavior Therapy (Fatigue in Teenagers on the Internet) for Adolescents With Chronic Fatigue Syndrome in Routine Clinical Care: Observational Study. Journal of Medical Internet Research 23 (8): e24839. Link: https://pubmed.ncbi.nlm.nih.gov/34397389/

Ascough C et al. (2020) Interventions to treat pain in paediatric CFS/ME: a systematic review. BMJ Paediatrics Open 4 (1). Link: https://bmjpaedsopen.bmj.com/content/4/1/e000617

Brigden A et al. (2018) Using the internet to cope with chronic fatigue syndrome/myalgic encephalomyelitis in adolescence: a qualitative study. BMJ Paediatrics Open 2 (1). Link: https://bmjpaedsopen.bmj.com/content/2/1/e000299

Collin SM et al. (2015) Chronic fatigue syndrome (CFS) or myalgic encephalomyelitis (ME) is different in children compared to in adults: a study of UK and Dutch clinical cohorts. BMJ Open 5(10): e008830. Link: http://bmjopen.bmj.com/content/5/10/e008830

Crawley E and Sterne JAC. (2009) Association between school absence and physical function in paediatric chronic fatigue syndrome/myalgic encephalopathy. Archives of Disease in Childhood 94(10): 752-756. Link: http://adc.bmj.com/content/94/10/752.info

Haig-Ferguson A et al. (2009) Memory and attention problems in children with chronic fatigue syndrome or myalgic encephalopathy. Archives of Disease in Childhood 94(10): 757-762. Link: http://adc.bmj.com/content/94/10/757.info

Harland MR et al. (2019) Paediatric chronic fatigue syndrome patients’ and parents’ perceptions of recovery. BMJ Paediatrics Open 3 (1). Link: https://bmjpaedsopen.bmj.com/content/3/1/e000525

Hiremath S et al. (2022) Key Features of a Multi-Disciplinary Hospital-Based Rehabilitation Program for Children and Adolescents with Moderate to Severe Myalgic Encephalomyelitis/Chronic Fatigue Syndrome ME/CFS. International Journal of Environmental Research and Public Health 19 (20): 13608. Link: doi.org/10.3390/ijerph192013608 (*NEW)

Leong A et al. (2021) Chronic Fatigue Syndrome in Childhood Revisited: Not Common, But Not Unknown- Case Study and Literature Review. *BioPsychoSocial Medicine* BMC (ResearchSquare) [Epub ahead of print.] Link: https://www.researchsquare.com/article/rs-962672/v1

Loades M (2022) Improving the identification and treatment of co-morbid depression and/or anxiety in adolescents with Chronic Fatigue Syndrome (CFS/ME). [Doctoral dissertation, University of Bristol] Link: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.852541 (*NEW*)

Loades M et al. (2020) How common are depression and anxiety in adolescents with chronic fatigue syndrome (CFS) and how should we screen for these mental health co-morbidities? A clinical cohort study. European Child and Adolescent Psychiatry [Epub ahead of print]. Link: https://pubmed.ncbi.nlm.nih.gov/32964335/

Loades ME et al. (2020) Do adolescents with Chronic Fatigue Syndrome (CFS/ME) and co-morbid anxiety and/or depressive symptoms think differently to those who do not have co-morbid psychopathology? Journal of Affective Disorders 30 (11): 1733-1743. Link: doi.org/10.1007/s00787-020-01646-w

Neale FK et al. (2019) Illness duration, mood and symptom impact in adolescents with chronic fatigue syndrome/myalgic encephalomyelitis? *Archives of Disease in Childhood* 105 (9): 911-912. Link: https://adc.bmj.com/content/early/2019/06/13/archdischild-2018-316720.long

Norris T et al. (2017) Natural course of chronic fatigue syndrome/myalgic encephalomyelitis in adolescents. *Archive of Diseases in Childhood* doi: 10.1136/archdischild-2016-311198. Link: http://adc.bmj.com/content/early/2017/01/19/archdischild-2016-311198

Øie MG et al. (2022) Subjective and objective cognitive function in adolescent with chronic fatigue following Epstein-Barr virus infection. *Journal of Psychosomatic Research* 163:111063. Link: doi.org/10.1016/j.jpsychores.2022.111063 (*NEW*)

Serafimova T et al. (2022) Experiences of pain in paediatric chronic fatigue syndrome/myalgic encephalomyelitis: a single-centre qualitative study. *BMJ Paediatrics Open* 6: e001201. Link: doi.org/10.1136/bmjpo-2021-001201

Solomon-Moore E et al. (2019) Physical activity patterns among children and adolescents with mild-to-moderate chronic fatigue syndrome/myalgic encephalomyelitis. *BMJ Paediatrics Open* 3 (1). Link: https://bmjpaedsopen.bmj.com/content/3/1/e000425

13. Government Documents

13.1 Disability support

13.2 Economic cost to the UK

13.3 General reports, debates, and statements

All-Party Parliamentary Group on ME. (2020) Inaugural meeting to re-establish APPG led by Carol Monaghan MP with Dr Charles Shepherd and the MEA providing secretariat. Link: https://www.meassociation.org.uk/2020/01/the-all-party-parliamentary-group-on-me-to-re-convene-please-invite-your-mp-to-attend-09-january-2020/

House of Commons (2013) Debate. 11 February col. 517W. Secretary of State re: ME/CFS WHO classification. Link: https://publications.parliament.uk/pa/cm201213/cmhansrd/cm130211/text/130211w0003.htm#13021150000045

House of Commons (2013). Written evidence to Health Select Committee from the ME Association. Link: https://publications.parliament.uk/pa/cm201415/cmselect/cmhealth/401/401w11.htm

14. Healthcare

14.1. NICE Guidelines

Flottorp SA et al. (2022) New NICE guideline on chronic fatigue syndrome: more ideology than science? Lancet 399 (10325): 611-613. Link: doi.org/10.1016/S0140-6736(22)00183-0

NICE Clinical Guideline ME/CFS (NG206) (October 2021): https://www.nice.org.uk/guidance/ng206

15. Case studies and case reports

Soejima Y et al. (2022) Late-Onset Hypogonadism in a Male Patient with Long COVID Diagnosed by Exclusion of ME/CFS. *Medicina* 58: 536. Link: doi.org/10.3390/medicina58040536

16. Long-COVID which cover ME/CFS

16.1 Children and adolescents

Sorg A et al. (2022) Association of SARS-CoV-2 Seropositivity With Myalgic Encephalomyelitis and/or Chronic Fatigue Syndrome Among Children and Adolescents in Germany. *JAMA Netw Open* 5 (9): e2233454. Link: doi.org/10.1001/jamanetworkopen.2022.33454 (**NEW**)

16.2 Endothelial cells

16.3 Evidence of overlap with ME/CFS

Bonilla H et al. (2022) Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is common in post-acute sequelae of SARS-CoV-2 infection (PASC): Results from a post-COVID-19 multidisciplinary clinic. medRxiv 2022.08.03.22278363 [Preprint]. Link: doi.org/10.1101/2022.08.03.22278363 (*NEW)

Sorg A et al. (2022) Association of SARS-CoV-2 Seropositivity With Myalgic Encephalomyelitis and/or Chronic Fatigue Syndrome Among Children and

16.4 Gene expression

Comment

16.5 Microclots

16.6 Miscellaneous

16.7 Predictors

16.8 Prognosis and quality of life

16.9 Symptoms

16.10 Vaccinations

16.11 Unclassified list! (Unsorted)

Davenport TE et al. (2022) Lessons from Myalgic Encephalomyelitis/Chronic Fatigue Syndrome for Long COVID: Postexertional Symptom Exacerbation is an Abnormal Response to Exercise/Activity. JOSPT. Link: doi.org/10.2519/jospt.blog.20220202

Hussein K et al. (2022) Long-COVID post-viral chronic fatigue syndrome and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: a proof of concept and mechanism study. medRxiv [preprint]. Link: https://www.medrxiv.org/content/10.1101/2022.04.25.22274251v1.article-metrics

Morrow AK et al. (2022) Long-Term COVID 19 Sequelae in Adolescents: the Overlap with Orthostatic Intolerance and ME/CFS. Current Paediatric Reports. Link: doi.org/10.1007/s40124-022-00261-4

Patterson BK et al. (2022) Cytokine Hub Classification of PASC, ME-CFS and other PASC-like Conditions. ResearchSquare [Preprint]. Link: doi.org/10.21203/rs.3.rs-1598634/v1 (*NEW)

Tokumasu K et al. (2022) Clinical Characteristics of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) Diagnosed in Patients with Long COVID. *Medicina* 58: 850. Link: doi.org/10.3390/medicina58070850 (*NEW)

17. Miscellaneous

He L et al. (2022) Effects of Shenxian Congee on Chronic Fatigue Syndrome Rats by NF-κB Signaling Pathway. Pakistan Journal of Zoology

Ohashi Y et al. (2022) Differences in outcomes after total hip arthroplasty for osteoarthritis between patients with and without central sensitivity syndromes other than fibromyalgia. Scientific Reports 12: 15327. Link: doi.org/10.1038/s41598-022-19369-0 (**NEW)

Tokumasu K et al. (2021) Idiopathic combined adrenocorticotropic and growth hormone deficiency mimicking chronic fatigue syndrome. BMJ Case Reports CP 14: e244861. Link: https://casereports.bmj.com/content/14/10/e244861

18. Master and Doctoral Theses

Asprusten TT (2022) Diagnosis of Chronic Fatigue Syndrome in Adolescents. [Doctoral dissertation, University of Oslo]. Link: https://www.duo.uio.no/bitstream/handle/10852/92148/PhD-Asprusten-2022.pdf?sequence=1

Clapperton B (2022) Applying latent class cluster analysis and data mining methods to identify classes of chronic fatigue syndrome patients that are predictive of treatment success. [Doctoral dissertation, King’s College London]. Link: https://kclpure.kcl.ac.uk/portal/files/181949538/2022_Clapperton_Ben_0976409_etesis.pdf (*NEW)

Loades M (2022) Improving the identification and treatment of co-morbid depression and/or anxiety in adolescents with Chronic Fatigue Syndrome (CFS/ME). [Doctoral dissertation, University of Bristol] Link: https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.852541 (*NEW)

The ME Association: Please support our vital work

If you would like to support our efforts and ensure we are able to inform, support, campaign, and invest in biomedical research, then please donate today.

- Just click the image opposite for one-off donations or to establish a regular payment.
- You can even establish your own fundraising event on JustGiving.
- Or why not join the ME Association as a member and be part of our growing community?

In return for an annual subscription from only £18, you will receive ME Essential – quite simply the best M.E. magazine in the UK today!

ME Association Registered Charity Number 801279